Title :
Restoration of
-Decoded Images Via Soft-Decision Estimation
Author :
Zhou, Jiantao ; Wu, Xiaolin ; Zhang, Lei
Author_Institution :
Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON, Canada
Abstract :
The l∞-constrained image coding is a technique to achieve substantially lower bit rate than strictly (mathematically) lossless image coding, while still imposing a tight error bound at each pixel. However, this technique becomes inferior in the l2 distortion metric if the bit rate decreases further. In this paper, we propose a new soft decoding approach to reduce the l2 distortion of l∞-decoded images and retain the advantages of both minmax and least-square approximations. The soft decoding is performed in a framework of image restoration that exploits the tight error bounds afforded by the l∞-constrained coding and employs a context modeler of quantization errors. Experimental results demonstrate that the l∞-constrained hard decoded images can be restored to gain more than 2 dB in peak signal-to-noise ratio PSNR, while still retaining tight error bounds on every single pixel. The new soft decoding technique can even outperform JPEG 2000 (a state-of-the-art encoder-optimized image codec) for bit rates higher than 1 bpp, a critical rate region for applications of near-lossless image compression. All the coding gains are made without increasing the encoder complexity as the heavy computations to gain coding efficiency are delegated to the decoder.
Keywords :
codecs; decoding; image coding; image restoration; least squares approximations; minimax techniques; JPEG 2000; PSNR; coding efficiency; constrained image coding; context modeler; distortion metric; encoder complexity; encoder-optimized image codec; image restoration; l∞-decoded images; l2 restoration; least-square approximations; minmax approximations; near-lossless image compression; peak signal-to-noise ratio; quantization errors; soft decoding approach; soft-decision estimation; Adaptation models; Bit rate; Context modeling; Decoding; Image coding; Image restoration; Quantization; Context modeling; MRF; image restoration Markov random field; near-lossless image coding;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2012.2202672