DocumentCode :
1533216
Title :
Segment Optimization and Data-Driven Thresholding for Knowledge-Based Landslide Detection by Object-Based Image Analysis
Author :
Martha, Tapas Ranjan ; Kerle, Norman ; Van Westen, Cees J. ; Jetten, Victor ; Kumar, K. Vinod
Author_Institution :
Nat. Remote Sensing Centre, Indian Space Res. Organ., Hyderabad, India
Volume :
49
Issue :
12
fYear :
2011
Firstpage :
4928
Lastpage :
4943
Abstract :
To detect landslides by object-based image analysis using criteria based on shape, color, texture, and, in particular, contextual information and process knowledge, candidate segments must be delineated properly. This has proved challenging in the past, since segments are mainly created using spectral and size criteria that are not consistent for landslides. This paper presents an approach to select objectively parameters for a region growing segmentation technique to outline landslides as individual segments and also addresses the scale dependence of landslides and false positives occurring in a natural landscape. Multiple scale parameters were determined using a plateau objective function derived from the spatial autocorrelation and intrasegment variance analysis, allowing for differently sized features to be identified. While a high-resolution Resourcesat-1 Linear Imaging and Self Scanning Sensor IV (5.8 m) multispectral image was used to create segments for landslide recognition, terrain curvature derived from a digital terrain model based on Cartosat-1 (2.5 m) data was used to create segments for subsequent landslide classification. Here, optimal segments were used in a knowledge-based classification approach with the thresholds of diagnostic parameters derived from If-means cluster analysis, to detect landslides of five different types, with an overall recognition accuracy of 76.9%. The approach, when tested in a geomorphologically dissimilar area, recognized landslides with an overall accuracy of 77.7%, without modification to the methodology. The multiscale classification-based segment optimization procedure was also able to reduce the error of commission significantly in comparison to a single-optimal-scale approach.
Keywords :
geomorphology; geophysical image processing; terrain mapping; Cartosat-1 data; If-means cluster analysis; data-driven thresholding; digital terrain model; geomorphologically dissimilar area; intrasegment variance analysis; knowledge-based landslide detection; landslide recognition; linear imaging sensor; multiple-scale parameters; multiscale classification-based segment optimization; multispectral image; natural landscape; object-based image analysis; plateau objective function; region-growing segmentation technique; segment optimization; self scanning sensor; single-optimal-scale approach; size criteria; spatial autocorrelation analysis; spectral criteria; terrain curvature; Feature extraction; Image color analysis; Image segmentation; Optimization; Terrain factors; $K$-means cluster analysis; Disaster support; India; feature extraction; object-oriented analysis (OOA); segmentation;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2011.2151866
Filename :
5783913
Link To Document :
بازگشت