DocumentCode :
1533656
Title :
Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt
Author :
Wall, Conrad, III ; Weinberg, Marc S. ; Schmidt, Patricia B. ; Krebs, David E.
Author_Institution :
Dept. of Otology, Harvard Med. Sch., Boston, MA, USA
Volume :
48
Issue :
10
fYear :
2001
Firstpage :
1153
Lastpage :
1161
Abstract :
A prototype balance prosthesis has been made using miniature, high-performance inertial sensors to measure lateral head tilt and vibrotactile elements mounted on the body to display head tilt to the user. The device has been used to study the feasibility of providing artificial feedback of head tilt to reduce postural sway during quiet standing using six healthy subjects. Two vibrotactile display schemes were used: one in which the individual vibrating elements, called tactors, were placed on the shoulders (shoulder tactors); another in which columns of tactors were placed on the right and left sides of the trunk (side tactors). Root-mean-square head-tilt angle (Tilt) and center of pressure displacement (Sway) were measured for normal subjects standing in a semi-tandem Romberg position with eyes closed, under four conditions: no balance aids; shoulder tactors; side tactors; and light touch. Compared with no balance aids, the side tactors significantly reduced Tilt (35%) and Sway (33%). Shoulder tactors also significantly reduced Tilt (44%) and Sway (17%). Compared with tactors, light touch resulted in less Sway, but more Tilt. The results suggest that healthy normal subjects can reduce their lateral postural sway using head tilt information as provided by a vibrotactile display. Thus, further testing with balance-impaired subjects is now warranted.
Keywords :
feedback; microsensors; prosthetics; touch (physiological); balance prosthesis; balance-impaired subjects; center of pressure displacement; head tilt display; individual vibrating elements; micromechanical sensors; miniature high-performance inertial sensors; root-mean-square head-tilt angle; semi-tandem Romberg position; shoulders; tactors; vibrotactile tilt feedback; Displacement measurement; Displays; Eyes; Feedback; Micromechanical devices; Position measurement; Pressure measurement; Prosthetics; Prototypes; Testing; Adult; Analysis of Variance; Equipment Design; Feedback; Female; Head Movements; Humans; Male; Musculoskeletal Equilibrium; Orientation; Posture; Sensory Aids; Statistics, Nonparametric; Vibration;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/10.951518
Filename :
951518
Link To Document :
بازگشت