DocumentCode :
1533706
Title :
Learning automata with changing number of actions
Author :
L. Thathachar, M. ; Harita, B.R.
Author_Institution :
Dept. of Electr. Eng., Indian Inst. of Sci., Bangalore, India
Volume :
17
Issue :
6
fYear :
1987
Firstpage :
1095
Lastpage :
1100
Abstract :
A reinforcement scheme that is based on the linear reward-inaction updating algorithm is presented for a learning automaton whose action set changes from instant to instant. A learning automaton using the algorithm is shown to be both absolutely expedient and ε-optimal. The simulation results verify the ε-optimality of the algorithm. The results can be extended to the design of general nonlinear absolutely expedient learning algorithms.
Keywords :
automata theory; learning systems; ε-optimality; absolutely expedient automaton; action set; learning automaton; linear reward-inaction updating algorithm; reinforcement scheme;
fLanguage :
English
Journal_Title :
Systems, Man and Cybernetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9472
Type :
jour
DOI :
10.1109/TSMC.1987.6499323
Filename :
6499323
Link To Document :
بازگشت