DocumentCode :
1534090
Title :
Information-Theoretic Key Agreement of Multiple Terminals—Part I
Author :
Gohari, Amin Aminzadeh ; Anantharam, Venkat
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of California, Berkeley, CA, USA
Volume :
56
Issue :
8
fYear :
2010
Firstpage :
3973
Lastpage :
3996
Abstract :
We study the problem of information-theoretically secure secret key agreement under the well-known source model and channel model. In both of these models, multiple terminals wish to create a shared secret key that is secure from a passive eavesdropper. The terminals have access to a noiseless public communication channel and an additional resource that depends on the model. In the source model, the resource is an external source that repeatedly beams correlated randomness to the terminals; whereas in the channel model, the resource is a secure but noisy discrete memoryless broadcast channel. We derive new lower and upper bounds on the secret key capacity under both the source model and the channel model. The technique used for deriving our bound for the source model is to find certain properties of functions of joint probability distributions which, applied to the joint distribution of the source, will imply that they dominate the secret key capacity, and then prove the bound by a verification argument. A similar technique is used for the channel model. Finally, we also define a problem of communication for omniscience by a neutral observer and establish the equivalence between this new problem and the problem of secret key agreement. This generalizes an earlier result of Csiszár and Narayan.
Keywords :
cryptography; information theory; statistical distributions; channel model; information-theoretic secure secret key agreement; noiseless public communication channel; noisy discrete memoryless broadcast channel; omniscience communication; passive eavesdropper; probability distribution; shared secret key; source model; verification argument; Broadcasting; Capacity planning; Communication channels; History; Information security; Memoryless systems; Probability distribution; Sun; Telecommunications; Upper bound; Channel model; common randomness; communication for omniscience; public discussion; secret key agreement; secret key capacity; security; source model; unconditional security;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2010.2050832
Filename :
5508611
Link To Document :
بازگشت