DocumentCode :
1534135
Title :
On Integer Values of Kloosterman Sums
Author :
Kononen, Keijo Petteri ; Rinta-Aho, Marko Juhani ; Väänänen, Keijo O.
Author_Institution :
Dept. of Math. Sci., Univ. of Oulu, Oulun, Finland
Volume :
56
Issue :
8
fYear :
2010
Firstpage :
4011
Lastpage :
4013
Abstract :
This paper considers rational integer values of Kloosterman sums over finite fields of characteristic p > 3. We shall prove two main results. The first one is a congruence relation satisfied by possible integer values. One consequence is that there are no Kloosterman zeroes in the case of characteristic p > 3, which generalizes recent works by Shparlinski, Moisio, and Lisoněk on this subject. This, in turn, implies that there are no Dillon type bent functions in the case p > 3 , thus answering a question posed recently by Helleseth and Kholosha. Our other main result states that the Kloosterman sum obtains an integer value at a point if and only if the same sum lifted to any extension field remains an integer.
Keywords :
polynomials; Kloosterman sums; bent functions; integer values; Cryptography; Equations; Galois fields; Polynomials; Bent function; Kloosterman sum; cyclotomic field;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2010.2050806
Filename :
5508618
Link To Document :
بازگشت