DocumentCode :
153554
Title :
Practical Evasion of a Learning-Based Classifier: A Case Study
Author :
Rndic, Nedim ; Laskov, Pavel
Author_Institution :
Dept. of Cognitive Syst., Univ. of Tubingen, Tubingen, Germany
fYear :
2014
fDate :
18-21 May 2014
Firstpage :
197
Lastpage :
211
Abstract :
Learning-based classifiers are increasingly used for detection of various forms of malicious data. However, if they are deployed online, an attacker may attempt to evade them by manipulating the data. Examples of such attacks have been previously studied under the assumption that an attacker has full knowledge about the deployed classifier. In practice, such assumptions rarely hold, especially for systems deployed online. A significant amount of information about a deployed classifier system can be obtained from various sources. In this paper, we experimentally investigate the effectiveness of classifier evasion using a real, deployed system, PDFrate, as a test case. We develop a taxonomy for practical evasion strategies and adapt known evasion algorithms to implement specific scenarios in our taxonomy. Our experimental results reveal a substantial drop of PDFrate´s classification scores and detection accuracy after it is exposed even to simple attacks. We further study potential defense mechanisms against classifier evasion. Our experiments reveal that the original technique proposed for PDFrate is only effective if the executed attack exactly matches the anticipated one. In the discussion of the findings of our study, we analyze some potential techniques for increasing robustness of learning-based systems against adversarial manipulation of data.
Keywords :
learning (artificial intelligence); pattern classification; security of data; PDFrate; adversarial data manipulation; learning-based classifier evasion; learning-based systems; malicious data detection; Feature extraction; Learning systems; Malware; Portable document format; Taxonomy; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Security and Privacy (SP), 2014 IEEE Symposium on
Conference_Location :
San Jose, CA
ISSN :
1081-6011
Type :
conf
DOI :
10.1109/SP.2014.20
Filename :
6956565
Link To Document :
بازگشت