DocumentCode :
1538046
Title :
A characterization of certain Griesmer codes: MMD codes in a more general sense
Author :
Olsson, Jonas ; Willems, Wolfgang
Author_Institution :
Dept. of Electr. Eng., Linkoping Univ., Sweden
Volume :
45
Issue :
6
fYear :
1999
fDate :
9/1/1999 12:00:00 AM
Firstpage :
2138
Lastpage :
2142
Abstract :
Let C be an [n,k,d]q linear code. The defect of C is the parameter s=s(C)=n-k+1-d. If k⩾m+1⩾2 then by the Griesmer bound d⩽(qm(q-1)/qm-1)(s+m). The author´s interest is in those linear codes having the maximum minimum distance, i.e., d=(qm(q-1)/qm-1)(s+m). For m=1 we have d=q(s+1) and the codes are maximum minimum distance (MMD) codes in the sense of Faldum and Willems (see ibid., vol.44, p.1555-58, 1998). Thus we consider MMD codes in a more general sense. We refer to them simply as MMD codes. All MMD codes with m=1 are known up to formal equivalence. Note that two codes are formally equivalent if they have the same weight distribution. The author classifies up to formal equivalence the MMD codes with m⩾2
Keywords :
linear codes; Galois fields; MMD codes; certain Griesmer codes; formal equivalence; linear code; maximum minimum distance codes; weight distribution; Galois fields; Hamming weight; Linear code; Vectors;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.782160
Filename :
782160
Link To Document :
بازگشت