Title :
Decoding of cyclic codes over F2+uF2
Author :
Udaya, Paramapalli ; Bonnecaze, Alexis
Author_Institution :
Dept. of Math., R. Melbourne Inst. of Technol., Vic., Australia
fDate :
9/1/1999 12:00:00 AM
Abstract :
We give a simple decoding algorithm to decode linear cyclic codes of odd length over the ring R=F2+uF2={0,1,u,u¯=u+1}, where u2=0. A spectral representation of the cyclic codes over R is given and a BCH-like bound is given for the Lee distance of the codes. The ring R shares many properties of Z4 and F4 and admits a linear “Gray map”
Keywords :
BCH codes; Galois fields; Gray codes; binary codes; cyclic codes; decoding; linear codes; BCH-like bound; Lee distance; decoding algorithm; linear Gray map; linear cyclic codes; odd length codes; spectral representation; Computer science; Decoding; Information theory; Linearity;
Journal_Title :
Information Theory, IEEE Transactions on