DocumentCode :
1538240
Title :
A dynamic regularized radial basis function network for nonlinear, nonstationary time series prediction
Author :
Yee, Paul ; Haykin, Simon
Author_Institution :
Commun. Res. Lab., McMaster Univ., Hamilton, Ont., Canada
Volume :
47
Issue :
9
fYear :
1999
fDate :
9/1/1999 12:00:00 AM
Firstpage :
2503
Lastpage :
2521
Abstract :
In this paper, constructive approximation theorems are given which show that under certain conditions, the standard Nadaraya-Watson (1964) regression estimate (NWRE) can be considered a specially regularized form of radial basis function networks (RBFNs). From this and another related result, we deduce that regularized RBFNs are m.s., consistent, like the NWRE for the one-step-ahead prediction of Markovian nonstationary, nonlinear autoregressive time series generated by an i.i.d. noise processes. Additionally, choosing the regularization parameter to be asymptotically optimal gives regularized RBFNs the advantage of asymptotically realizing minimum m.s. prediction error. Two update algorithms (one with augmented networks/infinite memory and the other with fixed-size networks/finite memory) are then proposed to deal with nonstationarity induced by time-varying regression functions. For the latter algorithm, tests on several phonetically balanced male and female speech samples show an average 2.2-dB improvement in the predicted signal/noise (error) ratio over corresponding adaptive linear predictors using the exponentially-weighted RLS algorithm. Further RLS filtering of the predictions from an ensemble of three such RBFNs combined with the usual autoregressive inputs increases the improvement to 4.2 dB, on average, over the linear predictors
Keywords :
filtering theory; least mean squares methods; prediction theory; radial basis function networks; speech processing; time series; Markovian nonstationary; Nadaraya-Watson regression estimate; RLS filtering; adaptive linear predictors; approximation theorems; augmented networks/infinite memory; autoregressive inputs; dynamic regularized radial basis function network; exponentially-weighted RLS algorithm; female speech samples; fixed-size networks/finite memory; i.i.d. noise processes; male and female speech; male speech samples; minimum mean square prediction error; nonlinear autoregressive time series; nonlinear nonstationary time series prediction; one-step-ahead prediction; phonetically balanced speech samples; signal/noise ratio; time-varying regression functions; update algorithms; Neural networks; Noise generators; Nonlinear filters; Predictive models; Radial basis function networks; Resonance light scattering; Signal processing algorithms; Signal to noise ratio; Speech enhancement; Testing;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.782193
Filename :
782193
Link To Document :
بازگشت