DocumentCode :
1538397
Title :
Cooperative Access in Wireless Networks: Stable Throughput and Delay
Author :
Rong, Beiyu ; Ephremides, Anthony
Author_Institution :
Marvell Semiconductor, Inc., Santa Clara, CA, USA
Volume :
58
Issue :
9
fYear :
2012
Firstpage :
5890
Lastpage :
5907
Abstract :
We investigate the impact of a protocol-level cooperation idea in a wireless multiple-access system. By dynamically and opportunistically exploiting spatial diversity among the N source users, a packet is delivered to the common destination through either a direct link or through cooperative relaying by intermediate source nodes that have a statistically better channel to the destination. The traffic burstiness at the source is taken into account, and the performance metrics of the stable throughput region and delay are evaluated for the case of packet-erasure channels. We consider conflict-free, work-conserving transmission policies as well as plain time-division multiple-access policy. We establish that the stable throughput regions under both classes of cooperative policies are the same, which strictly contain the stable throughput regions achieved without cooperation. Moreover, the optimal policy for minimizing the average delay among the class of all cooperative work-conserving policies is determined. Then, in the case of two users, the closed-form delay expressions are explicitly derived as well. Our results indicate that cooperation can significantly reduce delay for both users.
Keywords :
Delay; Indexes; Relays; Routing; Throughput; Time division multiple access; Wireless communication; Delay; delay minimizing policy; protocol-level cooperation; queueing-theoretic formulations; stable throughput; wireless networks;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2012.2204491
Filename :
6216429
Link To Document :
بازگشت