DocumentCode :
1539463
Title :
Behavior of Tip-Steerable Needles in Ex Vivo and In Vivo Tissue
Author :
Majewicz, A. ; Marra, S.P. ; van Vledder, M.G. ; MingDe Lin ; Choti, M.A. ; Song, D.Y. ; Okamura, A.M.
Author_Institution :
Dept. of Mech. Eng., Stanford Univ., Stanford, CA, USA
Volume :
59
Issue :
10
fYear :
2012
Firstpage :
2705
Lastpage :
2715
Abstract :
Robotic needle steering is a promising technique to improve the effectiveness of needle-based clinical procedures, such as biopsies and ablation, by computer-controlled, curved insertions of needles within solid organs. In this paper, we explore the capabilities, challenges, and clinical relevance of asymmetric-tip needle steering through experiments in ex vivo and in vivo tissue. We evaluate the repeatability of needle insertion in inhomogeneous biological tissue and compare ex vivo and in vivo needle curvature and insertion forces. Steerable needles curved more in kidney than in liver and prostate, likely due to differences in tissue properties. Pre-bent needles produced higher insertion forces in liver and more curvature in vivo than ex vivo. When compared to straight stainless steel needles, steerable needles did not cause a measurable increase in tissue damage and did not exert more force during insertion. The minimum radius of curvature achieved by prebent needles was 5.23 cm in ex vivo tissue, and 10.4 cm in in vivo tissue. The curvatures achieved by bevel tip needles were negligible for in vivo tissue. The minimum radius of curvature for bevel tip needles in ex vivo tissue was 16.4 cm; however, about half of the bevel tip needles had negligible curvatures. We also demonstrate a potential clinical application of needle steering by targeting and ablating overlapping regions of cadaveric canine liver.
Keywords :
biological tissues; kidney; liver; medical robotics; needles; steering systems; surgery; curvature radius; ex vivo tissue; in vivo tissue; insertion forces; kidney; liver; needle insertion; prostate; repeatability; robotic needle steering; tip-steerable needles; Animals; Force; In vivo; Kidney; Liver; Needles; Robots; Biological tissue; steerable needles; surgical robotics; Alloys; Animals; Dogs; Equipment Design; Kidney; Liver; Male; Needles; Prostate; Reproducibility of Results; Robotics; Stainless Steel; Surgery, Computer-Assisted;
fLanguage :
English
Journal_Title :
Biomedical Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9294
Type :
jour
DOI :
10.1109/TBME.2012.2204749
Filename :
6217280
Link To Document :
بازگشت