DocumentCode :
1541749
Title :
Optimal Mean-Square Noise Benefits in Quantizer-Array Linear Estimation
Author :
Patel, Ashok ; Kosko, Bart
Author_Institution :
Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA
Volume :
17
Issue :
12
fYear :
2010
Firstpage :
1005
Lastpage :
1009
Abstract :
A new theorem shows that additive quantizer noise decreases the mean-squared error of threshold-array optimal and suboptimal linear estimators. The initial rate of this noise benefit improves as the number of threshold sensors or quantizers increases. The array sums the outputs of identical binary quantizers that receive the same random input signal. The theorem further shows that zero-symmetric uniform quantizer noise gives the fastest initial decrease in mean-squared error among all finite-variance zero-symmetric scale-family noise. These results apply to all bounded continuous signal densities and all zero-symmetric scale-family quantizer noise with finite variance.
Keywords :
mean square error methods; noise; quantisation (signal); additive quantizer noise; binary quantizers; finite-variance zero-symmetric scale-family noise; linear estimator; mean squared error; optimal mean-square noise benefits; quantizer-array linear estimation; threshold array; threshold sensors; zero-symmetric uniform quantizer noise; Additive noise; Array signal processing; Gaussian noise; Noise figure; Noise reduction; Permission; Quantization; Sensor arrays; Standards publication; Strontium; Noise benefit; quantizer array; scale-family noise; suprathreshold stochastic resonance;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2010.2059376
Filename :
5512588
Link To Document :
بازگشت