• DocumentCode
    1547593
  • Title

    Neurofuzzy state identification using prefiltering

  • Author

    Hong, X. ; Harris, C.J. ; Wilson, P.A.

  • Author_Institution
    Dept. of Electron. & Comput. Sci., Southampton Univ., UK
  • Volume
    146
  • Issue
    2
  • fYear
    1999
  • fDate
    3/1/1999 12:00:00 AM
  • Firstpage
    234
  • Lastpage
    240
  • Abstract
    A new state estimator algorithm is based on a neurofuzzy network and the Kalman filter algorithm. The major contribution of the paper is recognition of a bias problem in the parameter estimation of the state-space model and the introduction of a simple, effective prefiltering method to achieve unbiased parameter estimates in the state-space model, which will then be applied for state estimation using the Kalman filtering algorithm. Fundamental to this method is a simple prefiltering procedure using a nonlinear principal component analysis method based on the neurofuzzy basis set. This prefiltering can be performed without prior system structure knowledge. Numerical examples demonstrate the effectiveness of the new approach
  • Keywords
    Kalman filters; filtering theory; fuzzy neural nets; fuzzy set theory; parameter estimation; principal component analysis; state estimation; bias problem; neurofuzzy basis set; neurofuzzy network; neurofuzzy state identification; nonlinear principal component analysis method; prefiltering; state-space model; unbiased parameter estimates;
  • fLanguage
    English
  • Journal_Title
    Control Theory and Applications, IEE Proceedings -
  • Publisher
    iet
  • ISSN
    1350-2379
  • Type

    jour

  • DOI
    10.1049/ip-cta:19990121
  • Filename
    784770