DocumentCode :
1547792
Title :
Empirical measure of multiclass generalization performance: the K-winner machine case
Author :
Ridella, Sandro ; Zunino, Rodolfo
Author_Institution :
Dept. of Biophys. & Electron. Eng., Genoa Univ., Italy
Volume :
12
Issue :
6
fYear :
2001
fDate :
11/1/2001 12:00:00 AM
Firstpage :
1525
Lastpage :
1529
Abstract :
Combining the K-winner machine (KWM) model with empirical measurements of a classifier´s Vapnik-Chervonenkis (VC)-dimension gives two major results. First, analytical derivations refine the theory that characterizes the generalization performances of binary classifiers. Second, a straightforward extension of the theoretical framework yields bounds to the generalization error for multiclass problems
Keywords :
generalisation (artificial intelligence); learning (artificial intelligence); pattern classification; vector quantisation; K-winner machine model; Vapnik-Chervonenkis-dimension; binary classifiers; empirical measure; generalization error; generalization performances; multiclass generalization performance; multiclass problems; Circuits; Computer aided software engineering; Constraint optimization; Differential equations; Error analysis; Linear programming; Lyapunov method; Neural networks; Notice of Violation; Recurrent neural networks;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.963791
Filename :
963791
Link To Document :
بازگشت