Title :
On the nature of the Boxer-Thaler and Madwed integrators and their applications in digitizing a continuous-time system
Author :
Wang, Chi-Hsu ; Lin, Mon-yih ; Teng, Ching-Cheng
Author_Institution :
Dept. of Electr. Eng., Nat. Taiwan Inst. of Technol., Taipei, Taiwan
fDate :
10/1/1990 12:00:00 AM
Abstract :
The nature of the Boxer-Thaler and Madwed integrators is explored. A consistent derivation of the Madwed integrator from the well-known derivation of the Boxer-Thaler integrator is proposed. A new general computerized algorithm is also proposed for the kth-order Boxer-Thaler and Madwed integrators. These two discrete integrators are used to replace the Tustin integrator for digitizing a continuous-time system. A more systematic and precise formulation of the Q-matrix is presented for the s-domain to z-domain transformation via Boxer-Thaler and Madwed integrators. Due to the more accurate nature of these two discrete integrators, better results can be obtained. A set of MATLAB programs is written to implement the proposed algorithms
Keywords :
integration; matrix algebra; Boxer; MATLAB programs; Madwed; Q-matrix; Thaler; Tustin integrator; continuous-time system; derivation; discrete integrators; s-domain transformation; z-domain transformation; Application software; Control engineering; Convolution; Councils; Genetic expression; MATLAB; Polynomials; Programming;
Journal_Title :
Automatic Control, IEEE Transactions on