DocumentCode :
1550593
Title :
Spectral Regression with Low-Rank Approximation for Dynamic Graph Link Prediction
Author :
Fang, Chunsheng ; Kohram, Mojtaba ; Ralescu, Anca L.
Volume :
26
Issue :
4
fYear :
2011
Firstpage :
48
Lastpage :
53
Abstract :
The paper mentions that the temporal regression model for the dynamic graph link prediction problem rests on spectral graph theory and low-rank approximation for the graph Laplacian matrix.
Keywords :
approximation theory; graph theory; matrix algebra; regression analysis; dynamic graph link prediction problem; graph Laplacian matrix; low-rank approximation; spectral graph theory; spectral regression; temporal regression model; Autoregressive processes; Computational modeling; Eigenvalues and eigenfunctions; Laplace equations; Least squares approximation; Predictive models; ARMA; dynamic graph analysis; intelligent systems; link prediction; low-rank approximation; social networks; spectral methods; statistical models;
fLanguage :
English
Journal_Title :
Intelligent Systems, IEEE
Publisher :
ieee
ISSN :
1541-1672
Type :
jour
DOI :
10.1109/MIS.2011.44
Filename :
5871566
Link To Document :
بازگشت