DocumentCode :
1552978
Title :
Learning algorithm for nonlinear support vector machines suited for digital VLSI
Author :
Anguita, D. ; Boni, A. ; Ridella, S.
Author_Institution :
Dept. of Biophys. & Electron. Eng., Genoa Univ., Italy
Volume :
35
Issue :
16
fYear :
1999
fDate :
8/5/1999 12:00:00 AM
Firstpage :
1349
Lastpage :
1350
Abstract :
A learning algorithm for radial basis function support vector machines (RBF-SVMs) that can be easily implemented in digital VLSI is proposed. It is shown that, as opposed to traditional artificial neural networks, learning in SVMs is very robust with respect to quantisation effects deriving from the finite precision of computations
Keywords :
VLSI; digital integrated circuits; learning (artificial intelligence); neural chips; radial basis function networks; artificial neural network; digital VLSI; learning algorithm; nonlinear support vector machine; quantisation; radial basis function network;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19990950
Filename :
790045
Link To Document :
بازگشت