DocumentCode :
1553514
Title :
Adaptive combination of PCA and VQ networks
Author :
Weingessel, Andreas ; Bischof, Horst ; Hornik, Kurt ; Leisch, Friedrich
Author_Institution :
Inst. fur Stat. und Wahrscheinlichkeitstheorie, Tech. Univ. Wien, Austria
Volume :
8
Issue :
5
fYear :
1997
fDate :
9/1/1997 12:00:00 AM
Firstpage :
1208
Lastpage :
1211
Abstract :
In this paper we consider the principal component analysis (PCA) and vector quantization (VQ) neural networks for image compression. We present a method where the PCA and VQ steps are adaptively combined. A learning algorithm for this combined network is derived. We demonstrate that this approach can improve the results of the successive application of the individually optimal methods
Keywords :
adaptive systems; image coding; learning (artificial intelligence); multilayer perceptrons; statistical analysis; vector quantisation; adaptive combination; image compression; learning algorithm; multilayer perceptron; principal component analysis neural net; vector quantization neural networks; Adaptive systems; Entropy; Error correction; Histograms; Image coding; Image reconstruction; Neural networks; Principal component analysis; Vector quantization; Wavelet analysis;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.623222
Filename :
623222
Link To Document :
بازگشت