DocumentCode :
1553906
Title :
Aluminum-free strained-layer lasers emitting at 1.14 μm on low-composition InGaAs:n substrates by metalorganic chemical vapor deposition
Author :
Jones, Aaron M. ; Lent, B. ; Kluender, J.F. ; Moore, Alastair H. ; Bonner, W.A. ; Coleman, J.J.
Author_Institution :
Microelectron. Lab., Illinois Univ., Urbana, IL, USA
Volume :
9
Issue :
10
fYear :
1997
Firstpage :
1319
Lastpage :
1321
Abstract :
Broad-area (W=150 μm) single-quantum-well (SQW) lasers have been successfully fabricated on n-type In/sub 0.03/Ga/sub 0.97/As substrates without incorporating aluminum-containing alloys. The strained-layer InGaP-GaAs-InGaAs heterostructure was grown by atmospheric pressure metalorganic chemical vapor deposition. Due to both the increased substrate lattice constant and the partial strain compensation supplied by the tensile-strained GaAs optical guiding layers, a peak emission wavelength of 1.1403 μm is obtained for a 1-mm cavity length.
Keywords :
III-V semiconductors; gallium arsenide; indium compounds; laser transitions; optical fabrication; quantum well lasers; semiconductor growth; vapour phase epitaxial growth; 1 mm; 1.14 mum; 1.1403 mum; 150 mum; In/sub 0.03/Ga/sub 0.97/As; InGaP-GaAs-InGaAs; aluminum-free strained-layer lasers; atmospheric pressure MOCVD; broad-area single-quantum-well lasers; cavity length; fabrication; increased substrate lattice constant; low-composition n-InGaAs substrates; metalorganic chemical vapor deposition; n-type In/sub 0.03/Ga/sub 0.97/As substrates; partial strain compensation; peak emission wavelengt; strained-layer InGaP-GaAs-InGaAs heterostructure; tensile-strained GaAs optical guiding layers; Chemical lasers; Chemical vapor deposition; Diode lasers; Indium gallium arsenide; Lattices; Optical buffering; Quantum well lasers; Stimulated emission; Substrates; Surface emitting lasers;
fLanguage :
English
Journal_Title :
Photonics Technology Letters, IEEE
Publisher :
ieee
ISSN :
1041-1135
Type :
jour
DOI :
10.1109/68.623249
Filename :
623249
Link To Document :
بازگشت