Author_Institution :
Biomed. Imaging Group, Fed. Inst. of Technol., Lausanne, Switzerland
Abstract :
For pt.I see ibid., vol.47, no.10, p.2783-95 (1999). In a previous paper, we proposed a general Fourier method that provides an accurate prediction of the approximation error, irrespective of the scaling properties of the approximating functions. Here, we apply our results when these functions satisfy the usual two-scale relation encountered in dyadic multiresolution analysis. As a consequence of this additional constraint, the quantities introduced in our previous paper can be computed explicitly as a function of the refinement filter. This is, in particular, true for the asymptotic expansion of the approximation error for biorthonormal wavelets as the scale tends to zero. One of the contributions of this paper is the computation of sharp, asymptotically optimal upper bounds for the least-squares approximation error. Another contribution is the application of these results to B-splines and Daubechies (1988, 1992) scaling functions, which yields explicit asymptotic developments and upper bounds. Thanks to these explicit expressions, we can quantify the improvement that can be obtained by using B-splines instead of Daubechies wavelets. In other words, we can use a coarser spline sampling and achieve the same reconstruction accuracy as Daubechies. Specifically, we show that this sampling gain converges to π as the order tends to infinity
Keywords :
Fourier analysis; error analysis; filtering theory; least squares approximations; signal reconstruction; signal resolution; signal sampling; splines (mathematics); wavelet transforms; B-splines; Daubechies scaling functions; approximating functions; approximation error prediction; approximation techniques; asymptotic expansion; asymptotically optimal upper bounds; biorthonormal wavelets; dyadic multiresolution analysis; explicit asymptotic expressions; general Fourier method; least-squares approximation error; quantitative Fourier analysis; reconstruction accuracy; refinement filter; sampling gain; scaling properties; spline sampling; Approximation error; Approximation methods; Filters; Image reconstruction; Multiresolution analysis; Sampling methods; Spline; Upper bound; Wavelet analysis; Wavelet transforms;