• DocumentCode
    155681
  • Title

    Mean Shift Spectral Clustering using Kernel Entropy Component Analysis

  • Author

    Agersborg, Jorgen A. ; Jenssen, Robert

  • Author_Institution
    Air & Space Syst. Div., Norwegian Defence Res. Establ. (FFI), Kjeller, Norway
  • fYear
    2014
  • fDate
    21-24 Sept. 2014
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    We present a promising clustering algorithm which combines mean shift (MS) clustering and spectral clustering (SC). A novel feature of the method is the use of two bandwidths, one for the mean shift algorithm in the first stage and another for the spectral clustering in the second. The first bandwidth should describe the local details, while the second captures the global structure of the dataset. Compared to traditional spectral clustering, our method may handle larger data sets, and the proposed MSSC procedure is shown to provide good clustering results in general when following some basic principles for selecting parameters.
  • Keywords
    data handling; pattern clustering; statistical distributions; KECA; data set handling; kernel entropy component analysis; mean shift spectral clustering; Accuracy; Bandwidth; Clustering algorithms; Clustering methods; Entropy; Kernel; Vectors; Spectral clustering; eigenvalues (spectrum) and eigenvectors; information theoretic clustering; kernel density estimation; mean shift;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Machine Learning for Signal Processing (MLSP), 2014 IEEE International Workshop on
  • Conference_Location
    Reims
  • Type

    conf

  • DOI
    10.1109/MLSP.2014.6958923
  • Filename
    6958923