DocumentCode :
1557356
Title :
Quantifying SMT decoupling capacitor placement in dc power-bus design for multilayer PCBs
Author :
Fan, Jun ; Drewniak, James L. ; Knighten, James L. ; Smith, Norman W. ; Orlandi, Antonio ; Van Doren, Thomas P. ; Hubing, Todd H. ; Dubroff, Richard E.
Author_Institution :
Electromagn. Compatibility Lab., Missouri Univ., Rolla, MO, USA
Volume :
43
Issue :
4
fYear :
2001
fDate :
11/1/2001 12:00:00 AM
Firstpage :
588
Lastpage :
599
Abstract :
Noise on a dc power-bus that results from device switching, as well as other potential mechanisms, is a primary source of many signal integrity (SI) and electromagnetic interference (EMI) problems. Surface mount technology (SMT) decoupling capacitors are commonly used to mitigate this power-bus noise. A critical design issue associated with this common practice in high-speed digital designs is placement of the capacitors with respect to the integrated circuits (ICs). Local decoupling, namely, placing SMT capacitors in proximity to ICs, is investigated in this study. Multilayer PCB designs that employ entire layers or area fills for power and ground in a parallel plate structure are considered. The results demonstrate that local decoupling can provide high-frequency benefits for certain PCB geometries through mutual inductive coupling between closely spaced vias. The associated magnetic flux linkage is between the power and ground layers. Numerical modeling using an integral equation formulation with circuit extraction is used to quantify the local decoupling phenomenon. Local decoupling can effectively reduce high-frequency power-bus noise, though placing capacitors adjacent to ICs may limit routing flexibility, and tradeoffs need to be made based on design requirements. Design curves are generated as a function of power-bus layer thickness and SMT capacitor/IC spacing using the modeling approach to quantify the power-bus noise reduction for decoupling capacitors located adjacent to devices. Measurement data is provided to corroborate the modeling approach
Keywords :
capacitors; circuit noise; digital circuits; electromagnetic compatibility; electromagnetic coupling; electromagnetic interference; integral equations; power supply circuits; printed circuit layout; surface mount technology; EMI problems; ICs; SMT capacitor/IC spacing; SMT decoupling capacitor placement; circuit extraction; closely spaced vias; dc power-bus design; design curves; device switching; electromagnetic interference problems; high-frequency power-bus noise; high-speed digital designs; integral equation formulation; integrated circuits; local decoupling; magnetic flux linkage; multilayer PCBs; mutual inductive coupling; parallel plate structure; power-bus noise; power-bus noise reduction; routing flexibility; signal integrity; surface mount technology; Capacitors; Digital integrated circuits; Electromagnetic interference; High speed integrated circuits; Integrated circuit modeling; Integrated circuit noise; Magnetic multilayers; Noise reduction; Potential well; Surface-mount technology;
fLanguage :
English
Journal_Title :
Electromagnetic Compatibility, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9375
Type :
jour
DOI :
10.1109/15.974639
Filename :
974639
Link To Document :
بازگشت