DocumentCode :
1559007
Title :
Asymptotic convergence of an SMO algorithm without any assumptions
Author :
Lin, Chih-Jen
Author_Institution :
Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan
Volume :
13
Issue :
1
fYear :
2002
fDate :
1/1/2002 12:00:00 AM
Firstpage :
248
Lastpage :
250
Abstract :
The asymptotic convergence of C.-J. Lin (2001) can be applied to a modified SMO (sequential minimal optimization) algorithm by S.S. Keerthi et al. (2001) with some assumptions. The author shows that for this algorithm those assumptions are not necessary
Keywords :
asymptotic stability; convergence; learning automata; minimisation; SVM; assumptions; asymptotic convergence; modified SMO algorithm; sequential minimal optimization algorithm; support vector machine; Analog computers; Circuits; Constraint optimization; Convergence; Delay effects; Differential equations; Helium; Neural networks; Nonlinear equations; Stability;
fLanguage :
English
Journal_Title :
Neural Networks, IEEE Transactions on
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/72.977319
Filename :
977319
Link To Document :
بازگشت