DocumentCode :
1559240
Title :
Monte Carlo extrinsic estimators of manifold-valued parameters
Author :
Srivastava, Anuj ; Klassen, Eric
Author_Institution :
Dept. of Stat., Florida State Univ., Tallahassee, FL, USA
Volume :
50
Issue :
2
fYear :
2002
fDate :
2/1/2002 12:00:00 AM
Firstpage :
299
Lastpage :
308
Abstract :
Monte Carlo (MC) methods have become an important tool for inferences in non-Gaussian and non-Euclidean settings. We study their use in those signal/image processing scenarios where the parameter spaces are certain Riemannian manifolds (finite-dimensional Lie groups and their quotient sets). We investigate the estimation of means and variances of the manifold-valued parameters, using two popular sampling methods: independent and importance sampling. Using Euclidean embeddings, we specify a notion of extrinsic means, employ Monte Carlo methods to estimate these means, and utilize large-sample asymptotics to approximate the estimator covariances. Experimental results are presented for target pose estimation (orthogonal groups) and signal subspace estimation (Grassmann manifolds). Asymptotic covariances are utilized to construct confidence regions, to compare estimators, and to determine the sample size for MC sampling
Keywords :
Lie groups; Monte Carlo methods; covariance analysis; image processing; importance sampling; parameter estimation; signal processing; signal sampling; Euclidean embeddings; Grassmann manifolds; Monte Carlo extrinsic estimators; Riemannian manifolds; asymptotic covariances; estimator covariances; extrinsic means; finite-dimensional Lie groups; image processing; importance sampling; independent sampling; large-sample asymptotics; manifold-valued parameters; nonEuclidean settings; nonGaussian settings; orthogonal groups; signal processing; signal subspace estimation; statistical inferences; target pose estimation; Image processing; Information geometry; Monte Carlo methods; Parameter estimation; Probability distribution; Sampling methods; Signal processing; Statistical distributions; Stochastic processes; Target tracking;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.978385
Filename :
978385
Link To Document :
بازگشت