DocumentCode :
1559325
Title :
Recursive algorithms for estimation of hidden Markov models and autoregressive models with Markov regime
Author :
Krishnamurthy, Vikram ; Yin, George Gang
Author_Institution :
Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Vic., Australia
Volume :
48
Issue :
2
fYear :
2002
fDate :
2/1/2002 12:00:00 AM
Firstpage :
458
Lastpage :
476
Abstract :
This paper is concerned with recursive algorithms for the estimation of hidden Markov models (HMMs) and autoregressive (AR) models under the Markov regime. Convergence and rate of convergence results are derived. Acceleration of convergence by averaging of the iterates and the observations are treated. Finally, constant step-size tracking algorithms are presented and examined
Keywords :
autoregressive processes; convergence of numerical methods; hidden Markov models; iterative methods; maximum likelihood estimation; recursive estimation; tracking; AR models; HMMs; Markov regime; autoregressive models; convergence; hidden Markov models; iterates; recursive algorithms; tracking algorithms; Approximation algorithms; Convergence; Hidden Markov models; Maximum likelihood estimation; Parameter estimation; Recursive estimation; Signal processing; Signal processing algorithms; Speech recognition; Stochastic processes;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.979322
Filename :
979322
Link To Document :
بازگشت