Title :
Higher order statistics and neural network for tremor recognition
Author :
Jakubowski, Jacek ; Kwiatos, Krzystof ; Chwaleba, Augustyn ; Osowski, Stanislaw
Author_Institution :
Inst. of Fundamental Electron., Mil. Univ. of Technol., Warsaw, Poland
Abstract :
This paper is concerned with the tremor characterization for the purpose of recognition. Three different types of tremor are considered in this paper: the parkinsonian, essential, and physiological. It has been proven that standard second-order statistical description of tremor is not sufficient to distinguish between these three types. Higher order polyspectra based on third- and fourth-order cumulants have been proposed as the additional characterization of the tremor time series. The set of 30 quantities based on the polyspectra has been proposed and investigated as the features for the recognition of tremor. The neural network of the multilayer perceptron structure has been used as a classifier. The results of numerical experiments have proven high efficiency of the proposed approach. The average error of recognition of three types of tremor did not exceed 3%.
Keywords :
feature extraction; feedforward neural nets; higher order statistics; medical signal processing; multilayer perceptrons; neurophysiology; signal classification; spectral analysis; time series; Parkinsonian tremor; bicoherence function; essential tremor; feature extraction; fourth-order cumulants; frequency feedback; higher order polyspectra; higher order statistics; multilayer perceptron; nonlinear chaotic signals; physiological tremor; power spectral density; short time Fourier transform; stochastic signals; third-order cumulants; tremor recognition; tremor time series; Accelerometers; Character recognition; Equations; Fingers; Higher order statistics; Multi-layer neural network; Multilayer perceptrons; Neural networks; Pathology; Stochastic processes; Computer Simulation; Fourier Analysis; Humans; Models, Statistical; Neural Networks (Computer); Parkinsonian Disorders; Signal Processing, Computer-Assisted; Stochastic Processes; Tremor;
Journal_Title :
Biomedical Engineering, IEEE Transactions on