DocumentCode :
156440
Title :
A study of changes prediction by HMM with non-stationarity image data: Case of urban area
Author :
Ben Abbes, Ali ; Essid, Houcine ; Farah, Imed Riadh ; Barra, Vincent
Author_Institution :
Lab. RIADI, Mannouba Univ., Mannouba, Tunisia
fYear :
2014
fDate :
17-19 March 2014
Firstpage :
396
Lastpage :
401
Abstract :
In this paper, we propose a methodology for changes prediction in urban area using Hidden Markov Model (HMM). The main focus is to study a non-stationarity data in HMM models. In order to use these data we apply a stationarity processes. We propose to calculate a spatial metrics of in urban area from satellite images. Then, a stationnarisation process was applied to remove the random variations, and to model the variations by using HMM. A comparative study is done. The performance of our method is showed by using a series of Landsat.
Keywords :
geophysical image processing; hidden Markov models; terrain mapping; HMM model; Landsat; change prediction; hidden Markov model; nonstationarity data; nonstationarity image data; random variation removal; satellite image; spatial metrics; stationarity process; stationnarisation process; urban area; Hidden Markov models; Indexes; Measurement; Monitoring; Remote sensing; Satellites; Urban areas; Hidden Markov model; Remote sensing; Spatial metrics; Stationnarisation; Urban;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Technologies for Signal and Image Processing (ATSIP), 2014 1st International Conference on
Conference_Location :
Sousse
Type :
conf
DOI :
10.1109/ATSIP.2014.6834643
Filename :
6834643
Link To Document :
بازگشت