DocumentCode :
1567046
Title :
Fast unimodular reduction: planar integer lattices
Author :
Yap, Chee K.
Author_Institution :
Courant Inst., New York Univ., NY, USA
fYear :
1992
Firstpage :
437
Lastpage :
446
Abstract :
The author shows that a shortest basis for the 2-dimensional lattice Λ(u, v) generated by an input pair u, v∈Z 2 can be computed in O(M(n) log n) where n is the bit-size of the input numbers and M(n) is the complexity of multiplying two n-bit integers. This generalizes Schonhage´s technique (1971) for fast integer GCD to a higher dimension
Keywords :
computational complexity; computational geometry; number theory; complexity; fast integer GCD; fast unimodular reduction; number theory; planar integer lattices; Algorithm design and analysis; Approximation algorithms; Books; Computational geometry; Lattices; Linear programming; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 1992. Proceedings., 33rd Annual Symposium on
Conference_Location :
Pittsburgh, PA
Print_ISBN :
0-8186-2900-2
Type :
conf
DOI :
10.1109/SFCS.1992.267808
Filename :
267808
Link To Document :
بازگشت