DocumentCode :
1567235
Title :
Sparse Representation and Synaptic Adaptation of the Visual Sensory System
Author :
Zhang, Liqing ; Ma, Libo ; Yang, Wenlu ; Xia, Bin
Author_Institution :
Dept. of Comput. Sci. & Eng., Shanghai Jiao Tong Univ.
Volume :
3
fYear :
2005
Firstpage :
1961
Lastpage :
1964
Abstract :
This paper investigates the sparse representation of visual neural information and its learning algorithm. First we introduce a generative statistical model for internal representation of visual neural information. Then the neural computing mechanism for representing sensory information in the generative model is discussed, and learning algorithm is developed for training the parameters in the generative model. Finally computer simulations are provided to illustrate the sparseness of the internal representation of the visual information
Keywords :
learning (artificial intelligence); neural nets; neurophysiology; statistical analysis; visual perception; generative statistical model; learning algorithm; sparse representation; synaptic adaptation; visual neural information; visual sensory system; Biological neural networks; Brain modeling; Codes; Computer networks; Computer simulation; Neurons; Neuroscience; Parameter estimation; Probability density function; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks and Brain, 2005. ICNN&B '05. International Conference on
Conference_Location :
Beijing
Print_ISBN :
0-7803-9422-4
Type :
conf
DOI :
10.1109/ICNNB.2005.1615008
Filename :
1615008
Link To Document :
بازگشت