DocumentCode :
1568383
Title :
Incorporating in vivo and ex vivo NMR sources of information for modeling robust brain tumor classifiers
Author :
Sava, A. R Croitor ; Laudadio, T. ; Sima, D.M. ; Garcia, M. I Osorio ; Van Huffel, Sabine ; Martinez-Bisbal, M.C. ; Celda, B. ; Heerschap, A.
Author_Institution :
Dept. of Electr. Eng., Katholieke Univ. Leuven, Leuven, Belgium
fYear :
2010
Firstpage :
353
Lastpage :
356
Abstract :
The purpose of this paper is to investigate the potential and limitations of using multimodal sources of information coming from in vivo NMR and ex vivo NMR data for detecting brain tumors. Supervised pattern recognition methods, whose performance directly depends on the prior available observations used in building them, are proposed. We show that high resolution magic angle spinning (HR-MAS) data act as complementary information for classifying magnetic resonance spectroscopic imaging (MRSI) data. In particularly, when considering rare brain tumors, since it is unlikely to acquire sufficient cases to define their metabolite profiles using only in vivo NMR information, HR-MAS can support the classification procedure. We describe different approaches to combine HRMAS data with in vivo MRSI and magnetic resonance imaging (MRI) data and investigate which parameters influence the classification results by means of extensive simulations and in vivo studies.
Keywords :
biomedical MRI; brain; image classification; magic angle spinning; medical image processing; pattern recognition; tumours; HR-MAS data; NMR information source; brain tumor classifier; high resolution magic angle spinning; magnetic resonance spectroscopic imaging data; supervised pattern recognition; Brain modeling; Image resolution; In vivo; Information resources; Magnetic resonance imaging; Neoplasms; Nuclear magnetic resonance; Pattern recognition; Robustness; Spinning; HR-MAS; MRSI; brain tumor; component; multimodal information; pattern recognition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Imaging Systems and Techniques (IST), 2010 IEEE International Conference on
Conference_Location :
Thessaloniki
Print_ISBN :
978-1-4244-6492-0
Type :
conf
DOI :
10.1109/IST.2010.5548504
Filename :
5548504
Link To Document :
بازگشت