DocumentCode :
157801
Title :
Concurrent and consistent virtual machine introspection with hardware transactional memory
Author :
Yutao Liu ; Yubin Xia ; Haibing Guan ; Binyu Zang ; Haibo Chen
Author_Institution :
Shanghai Key Lab. of Scalable Comput. & Syst., Shanghai Jiao Tong Univ., Shanghai, China
fYear :
2014
fDate :
15-19 Feb. 2014
Firstpage :
416
Lastpage :
427
Abstract :
Virtual machine introspection, which provides tamperresistant, high-fidelity “out of the box” monitoring of virtual machines, has many prominent security applications including VM-based intrusion detection, malware analysis and memory forensic analysis. However, prior approaches are either intrusive in stopping the world to avoid race conditions between introspection tools and the guest VM, or providing no guarantee of getting a consistent state of the guest VM. Further, there is currently no effective means for timely examining the VM states in question. In this paper, we propose a novel approach, called TxIntro, which retrofits hardware transactional memory (HTM) for concurrent, timely and consistent introspection of guest VMs. Specifically, TxIntro leverages the strong atomicity of HTM to actively monitor updates to critical kernel data structures. Then TxIntro can mount introspection to timely detect malicious tampering. To avoid fetching inconsistent kernel states for introspection, TxIntro uses HTM to add related synchronization states into the read set of the monitoring core and thus can easily detect potential inflight concurrent kernel updates. We have implemented and evaluated TxIntro based on Xen VMM on a commodity Intel Haswell machine that provides restricted transactional memory (RTM) support. To demonstrate the effectiveness of TxIntro, we implemented a set of kernel rootkit detectors using TxIntro. Evaluation results show that TxIntro is effective in detecting these rootkits, and is efficient in adding negligible performance overhead.
Keywords :
digital forensics; invasive software; virtual machines; HTM; TxIntro; VM-based intrusion detection; Xen VMM; commodity Intel Haswell machine; hardware transactional memory; kernel state; malicious tampering; malware analysis; memory forensic analysis; security application; virtual machine introspection; Abstracts; Continuous wavelet transforms; Educational institutions; Kernel; Monitoring; Single photon emission computed tomography; Virtual machine monitors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
High Performance Computer Architecture (HPCA), 2014 IEEE 20th International Symposium on
Conference_Location :
Orlando, FL
Type :
conf
DOI :
10.1109/HPCA.2014.6835951
Filename :
6835951
Link To Document :
بازگشت