Title :
Universal auto-calibration for a rapid battery impedance spectrum measurement device
Author :
Morrison, John L. ; Christophersen, Jon P. ; Morrison, William H.
Author_Institution :
Montana Tech, Univ. of Montana, Butte, MT, USA
Abstract :
Electrochemical impedance spectroscopy has been shown to be a valuable tool for diagnostics and prognostics of energy storage devices such as batteries and ultra-capacitors. Although measurements have been typically confined to laboratory environments, rapid impedance spectrum measurement techniques have been developed for on-line, embedded applications as well. The prototype hardware for the rapid technique has been validated using lithium-ion batteries, but issues with calibration had also been identified. A new, universal automatic calibration technique was developed to address the identified issues while also enabling a more simplified approach. A single, broad-frequency range is used to calibrate the system and then scaled to the actual range and conditions used when measuring a device under test. The range used for calibration must be broad relative to the expected measurement conditions for the scaling to be successful. Validation studies were performed by comparing the universal calibration approach with data acquired from targeted calibration ranges based on the expected range of performance for the device under test. First, a mid-level shunt range was used for calibration and used to measure devices with lower and higher impedance. Next, a high-excitation current level was used for calibration, followed by measurements using lower currents. Finally, calibration was performed over a wide frequency range and used to measure test articles with a lower set of frequencies. In all cases, the universal calibration approach compared very well with results acquired following a targeted calibration. Additionally, the shunts used for the automated calibration technique were successfully characterized such that the rapid impedance measurements compare very well with laboratory-scale measurements. These data indicate that the universal approach can be successfully used for onboard rapid impedance spectra measurements for a broad set of test devices and range of measur- ment conditions.
Keywords :
calibration; electrochemical impedance spectroscopy; secondary cells; electrochemical impedance spectroscopy; high-excitation current level; mid-level shunt range; rapid battery impedance spectrum measurement device; universal automatic calibration technique; Calibration; Current measurement; Energy storage; Frequency measurement; Power capacitors; Thyristors;
Conference_Titel :
Aerospace Conference, 2014 IEEE
Conference_Location :
Big Sky, MT
Print_ISBN :
978-1-4799-5582-4
DOI :
10.1109/AERO.2014.6836178