DocumentCode :
1580933
Title :
Enhancing Temporal Classification of AAR Parameters in EEG single-trial analysis for Brain-Computer Interfacing
Author :
Dharwarkar, G.S. ; Basir, O.
Author_Institution :
Electr. & Comput. Eng., Waterloo Univ., Ont.
fYear :
2006
Firstpage :
5358
Lastpage :
5361
Abstract :
Adaptive autoregressive (AAR) coefficients provide dynamic spectral information in EEG single-trial analysis. In this paper we propose a temporal evidence accumulation framework to enhance classification of AAR features. The results for a single subject, using 280 trials, indicate distinct improvements over a conventional method of temporal classification. We illustrate how the framework is applicable to AAR features, as well as to wavelet features as reported in Lemm et al., (2004). These findings put the two time-frequency features on equal footing for comparison in this context
Keywords :
autoregressive processes; electroencephalography; handicapped aids; medical signal processing; signal classification; AAR parameters; EEG single-trial analysis; adaptive autoregressive coefficients; brain-computer interfacing; dynamic spectral information; temporal classification enhancement; temporal evidence accumulation framework; time-frequency features; wavelet features; Biomedical engineering; Brain modeling; Context modeling; Data analysis; Electroencephalography; Pattern analysis; Predictive models; Protocols; Signal analysis; Synchronous motors; Brain-computer interface (BCI); adaptive autoregressive model (AAR); electroencephalogram (EEG); motor imagery;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the
Conference_Location :
Shanghai
Print_ISBN :
0-7803-8741-4
Type :
conf
DOI :
10.1109/IEMBS.2005.1615692
Filename :
1615692
Link To Document :
بازگشت