Title :
Multiple Cardiac Arrhythmia Recognition Using Adaptive Wavelet Network
Author :
Lin, Chia-Hung ; Chen, Pei-Jarn ; Chen, Yung-fu ; Lee, You-Yun ; Chen, Tainsong
Author_Institution :
Dept. of Electr. Eng., Kao-Yuan Inst. of Technol., Kaohsiung
Abstract :
This paper proposes a method for electrocardiogram (ECG) heartbeat pattern recognition using adaptive wavelet network (AWN). The ECG beat recognition can be divided into a sequence of stages, starting from feature extraction and conversion of QRS complexes, and then identifying cardiac arrhythmias based on the detected features. The discrimination method of ECG beats is a two-subnetwork architecture, consisting of a wavelet layer and a probabilistic neural network (PNN). Morlet wavelets are used to extract the features from each heartbeat, and then PNN is used to analyze the meaningful features and perform discrimination tasks. The AWN is suitable for application in a dynamic environment, with add-in and delete-off features using automatic target adjustment and parameter tuning. The experimental results obtained by testing the data of the MIT-BIH arrhythmia database demonstrate the efficiency of the proposed method
Keywords :
electrocardiography; medical signal processing; neural nets; pattern recognition; ECG; Morlet wavelets; QRS complexes; adaptive wavelet network; automatic target adjustment; cardiac arrhythmia identification; electrocardiogram; feature extraction; heartbeat pattern recognition; multiple cardiac arrhythmia recognition; parameter tuning; probabilistic neural network; wavelet layer; Adaptive systems; Computer vision; Data mining; Electrocardiography; Feature extraction; Heart beat; Neural networks; Pattern recognition; Performance analysis; Wavelet analysis; Adaptive Wavelet Network (AWN); Cardiac Arrhythmia; Electrocardiogram (ECG); Morlet Wavelet; Probabilistic Neural Network (PNN);
Conference_Titel :
Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the
Conference_Location :
Shanghai
Print_ISBN :
0-7803-8741-4
DOI :
10.1109/IEMBS.2005.1615769