DocumentCode :
1584005
Title :
Multi-objective Pareto genetic algorithms using fast elite updating
Author :
Guo, Guanqi ; Tan, Zhumei ; Yang, Guanci
Author_Institution :
Coll. of Inf. & Commun. Eng., Hunan Inst. of Sci. & Technol., Yueyang, China
fYear :
2009
Firstpage :
1323
Lastpage :
1326
Abstract :
This paper investigates the multi-objective optimization Pareto genetic algorithms (MOPGA) for searching alternative non-dominated Pareto-optimal solutions. A kind of niching approach using clustering crowding and fast elite updating is designed to maintain population diversity and uniform distribution of non-dominated solutions. The time complexity analysis shows clustering crowding and fast elite updating is a cost-efficient niching method. The simulation optimization on various multi-objective 0/1 knapsack problems shows MOPGA is capable of approximating to Pareto front evenly and cost efficiently, and the convergence rate and the distribution uniformity are consistently superior to that of the strength Pareto evolutionary approach (SPEA).
Keywords :
Pareto optimisation; computational complexity; genetic algorithms; knapsack problems; clustering crowding; cost-efficient niching method; fast elite updating; multiobjective 0/1 knapsack problems; multiobjective Pareto genetic algorithms; multiobjective optimization; niching approach; nondominated Pareto-optimal solutions; simulation optimization; time complexity analysis; Biomimetics; Constraint optimization; Cost function; Degradation; Evolutionary computation; Genetic algorithms; Knowledge engineering; Optimization methods; Pareto optimization; Robots;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on
Conference_Location :
Guilin
Print_ISBN :
978-1-4244-4774-9
Electronic_ISBN :
978-1-4244-4775-6
Type :
conf
DOI :
10.1109/ROBIO.2009.5420719
Filename :
5420719
Link To Document :
بازگشت