Title :
An aeronautical visible light communication system to enable in-flight connectivity
Author :
Krichene, Dhouha ; Sliti, Maha ; Abdallah, Walid ; Boudriga, Noureddine
Author_Institution :
Commun. Networks & Security Res. Lab., Univ. of Carthage, Tunis, Tunisia
Abstract :
This paper proposes an aeronautical network architecture based on visible light communication (VLC) technology which targets the distribution of in-flight entertainment services. To this purpose, we investigate the deployment of LEDs within an aircraft cabin using two different wavelength assignment methods in the VLC cells. The first method combines both WDM and Direct sequence OCDMA techniques to reduce intra-cell and inter-cell interferences. In the second one, a two-dimensional OCDMA scheme is used to enable efficient sharing of resources between users. Moreover, an FSO-based inter-VLC-cells communication scheme is described to enable connectivity distribution among LEDs and inter-cells handover. This scheme is based on all-optical switching using code-words that uniquely identify the cells. Finally, a simulation work is conducted to evaluate the bit error rate of the proposed access control schemes for different configurations of the VLC system.
Keywords :
aircraft communication; cellular radio; code division multiple access; error statistics; interference suppression; light emitting diodes; mobility management (mobile radio); spread spectrum communication; wavelength assignment; wavelength division multiplexing; FSO-based interVLC cell communication scheme; LED; VLC technology aeronautical network architecture; WDM technique; access control scheme; aeronautical visible light communication system; aircraft cabin; all-optical switching; bit error rate; direct sequence OCDMA technique; in-flight connectivity distribution; in-flight entertainment service distribution; intercell handover; intercell interference reduction; intracell interference reduction; resource sharing; two-dimensional OCDMA scheme; wavelength assignment method; Adaptive optics; Aircraft; Bit error rate; Integrated optics; Interference; Light emitting diodes; Optical switches; FSO; OCDMA; VLC; in-flight connectivity;
Conference_Titel :
Transparent Optical Networks (ICTON), 2015 17th International Conference on
Conference_Location :
Budapest
DOI :
10.1109/ICTON.2015.7193336