Title :
Computing the Tutte Polynomial in Vertex-Exponential Time
Author :
Bjorklund, Andreas ; Husfeldt, Thore ; Kaski, Petteri ; Koivisto, Mikko
Author_Institution :
Dept. of Comput. Sci., Lund Univ., Lund
Abstract :
The deletion-contraction algorithm is perhaps the most popular method for computing a host of fundamental graph invariants such as the chromatic, flow, and reliability polynomials in graph theory, the Jones polynomial of an alternating link in knot theory, and the partition functions of the models of Ising, Potts, and Fortuin-Kasteleyn in statistical physics. Prior to this work, deletion-contraction was also the fastest known general-purpose algorithm for these invariants, running in time roughly proportional to the number of spanning trees in the input graph.Here, we give a substantially faster algorithm that computes the Tutte polynomial-and hence, all the aforementioned invariants and more-of an arbitrary graph in time within a polynomial factor of the number of connected vertex sets. The algorithm actually evaluates a multivariate generalization of the Tutte polynomial by making use of an identity due to Fortuin and Kasteleyn. We also provide a polynomial-space variant of the algorithm and give an analogous result for Chung and Graham´s cover polynomial.
Keywords :
computational complexity; polynomials; set theory; trees (mathematics); Jones polynomial; Tutte polynomial; connected vertex sets; cover polynomial; deletion-contraction algorithm; fundamental graph invariants; knot theory; multivariate generalization; partition functions; reliability polynomials; spanning trees; statistical physics; vertex-exponential time; Approximation algorithms; Computer science; Graph theory; Information technology; Partitioning algorithms; Physics computing; Polynomials; Quantum computing; Reliability theory; Tree graphs; Exact algorithms; Potts model; Tutte polynomial; exponential-time algorithms;
Conference_Titel :
Foundations of Computer Science, 2008. FOCS '08. IEEE 49th Annual IEEE Symposium on
Conference_Location :
Philadelphia, PA
Print_ISBN :
978-0-7695-3436-7
DOI :
10.1109/FOCS.2008.40