DocumentCode :
1596473
Title :
Entropy Coding via Parametric Source Model with Applications in Fast and Efficient Compression of Image and Video Data
Author :
Minoo, Koohyar ; Nguyen, Truong
Author_Institution :
Adv. Technol. Group, Motorola Inc., San Diego, CA
fYear :
2009
Firstpage :
461
Lastpage :
461
Abstract :
In this paper a framework is proposed for efficient entropy coding of data which can be represented by a parametric distribution model. Based on the proposed framework, an entropy coder achieves coding efficiency by estimating the parameters of the statistical model (for the coded data), either via maximum a posteriori (MAP) or Maximum Likelihood (ML) parameter estimation techniques. The problem of optimal entropy coding for transmission of a block of data x1,,x2,...xN , can be formulated by assuming that the data comes from a source with a parametric probability mass function (pmf) P(X1,X2,...XN;thetas) with parameter thetas (in general thetas is a vector). The parametric model assumption makes it possible to assign a probability to the event of observing x1,,x2,...xN, and use this probability for entropy coding of this data, only by conveying the parameter thetas.The impressive results from the simple parametric model, based on a geometric distribution of coded data for compression of natural images, are encouraging to further investigate the effect of more complicated data models such as Poisson distribution and mixture models.
Keywords :
Poisson distribution; data compression; entropy codes; maximum likelihood estimation; video coding; Poisson distribution; entropy coding; image data compression; maximum a posteriori; maximum likelihood parameter estimation; parametric distribution model; probability mass function; source model; video data compression; Application software; Data compression; Entropy coding; Image coding; Maximum likelihood decoding; Maximum likelihood estimation; Parameter estimation; Parametric statistics; Video compression; Videoconference; entropy coding; image compression; parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Compression Conference, 2009. DCC '09.
Conference_Location :
Snowbird, UT
ISSN :
1068-0314
Print_ISBN :
978-1-4244-3753-5
Type :
conf
DOI :
10.1109/DCC.2009.80
Filename :
4976515
Link To Document :
بازگشت