DocumentCode :
1597429
Title :
Quantum Approximation Error on Some Sobolev Classes
Author :
Ye, Peixin
Author_Institution :
Nankai Univ., Tianjin
Volume :
4
fYear :
2007
Firstpage :
603
Lastpage :
607
Abstract :
We study the approximation of functions from anisotropic and generalized Sobolev classes under Lq([0, 1]d) norm in the quantum model of computation. Based on the quantum algorithm for approximation of finite imbedding from LN P to LiN Q, we develop a quantum algorithm for approximating the imbedding from anisotropic Sobolev classes B(Wp r(|0, 1|d)) to Lq(|0, 1|d) space for all 1 les q,p les infin and prove their optimality. Our results show that for p < q the quantum model of computation can bring a speedup of roughly squaring the rate of classical deterministic and randomized settings.
Keywords :
approximation theory; quantum computing; anisotropic Sobolev classes; quantum algorithm; quantum approximation error; Anisotropic magnetoresistance; Approximation algorithms; Approximation error; Computational modeling; Mathematical model; Neodymium; Probability distribution; Quantum computing; Random variables;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Natural Computation, 2007. ICNC 2007. Third International Conference on
Conference_Location :
Haikou
Print_ISBN :
978-0-7695-2875-5
Type :
conf
DOI :
10.1109/ICNC.2007.588
Filename :
4344745
Link To Document :
بازگشت