Title :
Design and evaluation of learning algorithms for dynamic resource management in virtual networks
Author :
Mijumbi, Rashid ; Gorricho, Juan-Luis ; Serrat, Joan ; Claeys, Maxim ; De Turck, Filip ; Latre, Steven
Author_Institution :
Univ. Politec. de Catalunya, Barcelona, Spain
Abstract :
Network virtualisation is considerably gaining attention as a solution to ossification of the Internet. However, the success of network virtualisation will depend in part on how efficiently the virtual networks utilise substrate network resources. In this paper, we propose a machine learning-based approach to virtual network resource management. We propose to model the substrate network as a decentralised system and introduce a learning algorithm in each substrate node and substrate link, providing self-organization capabilities. We propose a multiagent learning algorithm that carries out the substrate network resource management in a coordinated and decentralised way. The task of these agents is to use evaluative feedback to learn an optimal policy so as to dynamically allocate network resources to virtual nodes and links. The agents ensure that while the virtual networks have the resources they need at any given time, only the required resources are reserved for this purpose. Simulations show that our dynamic approach significantly improves the virtual network acceptance ratio and the maximum number of accepted virtual network requests at any time while ensuring that virtual network quality of service requirements such as packet drop rate and virtual link delay are not affected.
Keywords :
Internet; computer network management; computer network performance evaluation; learning (artificial intelligence); multi-agent systems; virtualisation; Internet; decentralised system; machine learning-based approach; multiagent learning algorithm; network virtualisation; quality of service requirements; substrate network; virtual network resource management; Bandwidth; Delays; Dynamic scheduling; Heuristic algorithms; Learning (artificial intelligence); Resource management; Substrates; Artificial Intelligence; Dynamic Resource Allocation; Machine Learning; Multiagent Systems; Network virtualization; Reinforcement Learning; Virtual Network Embedding;
Conference_Titel :
Network Operations and Management Symposium (NOMS), 2014 IEEE
Conference_Location :
Krakow
DOI :
10.1109/NOMS.2014.6838258