DocumentCode :
1599573
Title :
Weighting observations: the use of kinematic models in object tracking
Author :
Nickels, Kevin ; Hutchinson, Seth
Author_Institution :
Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA
Volume :
2
fYear :
1998
Firstpage :
1677
Abstract :
We describe a model-based object tracking system that updates the configuration parameters of an object model based upon information gathered from a sequence of monocular images. Realistic object and imaging models are used to determine the expected visibility of object features, and to determine the expected appearance of all visible features. We formulate the tracking problem as one of parameter estimation from partially observed data, and apply the extended Kalman filtering (EKF) algorithm. The models are also used to determine what point feature movement reveals about the configuration parameters of the object. This information is used by the EKF to update estimates for parameters, and for the uncertainty in the current estimates, based on observations of point features in monocular images
Keywords :
Kalman filters; feature extraction; image sequences; manipulator kinematics; optical tracking; parameter estimation; robot vision; configuration parameters; extended Kalman filtering; feature extraction; kinematic models; manipulators; monocular image sequence; object tracking; parameter estimation; robotic arms; Computational geometry; Filtering algorithms; Kalman filters; Kinematics; Nickel; Optical imaging; Parameter estimation; Robots; State estimation; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on
Conference_Location :
Leuven
ISSN :
1050-4729
Print_ISBN :
0-7803-4300-X
Type :
conf
DOI :
10.1109/ROBOT.1998.677401
Filename :
677401
Link To Document :
بازگشت