DocumentCode :
1605139
Title :
Comparative study of fuzzy methods in breast cancer diagnosis
Author :
Fuentes-Uriarte, J. ; García, M. ; Castillo, O.
Author_Institution :
Div. of Res. & Grad. Studies, Tijuana Inst. of Technol., Tijuana
fYear :
2008
Firstpage :
1
Lastpage :
5
Abstract :
This paper describes a comparison of results in breast cancer diagnosis, using two fuzzy logic methods; the first case uses fuzzy clustering with the fuzzy c-means (FCM) algorithm, which tries to find similarities between different variables; the second method is an implementation of a fuzzy inference system (FIS) with a genetic algorithm (GA) for creating and activating the optimal rules.
Keywords :
cancer; fuzzy logic; fuzzy reasoning; fuzzy set theory; genetic algorithms; medical diagnostic computing; pattern clustering; breast cancer diagnosis; fuzzy c-means algorithm; fuzzy clustering; fuzzy inference system; fuzzy logic method; genetic algorithm; Artificial intelligence; Breast cancer; Databases; Fuzzy logic; Fuzzy sets; Fuzzy systems; Genetic algorithms; Humans; Medical diagnostic imaging; Needles;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Information Processing Society, 2008. NAFIPS 2008. Annual Meeting of the North American
Conference_Location :
New York City, NY
Print_ISBN :
978-1-4244-2351-4
Electronic_ISBN :
978-1-4244-2352-1
Type :
conf
DOI :
10.1109/NAFIPS.2008.4531337
Filename :
4531337
Link To Document :
بازگشت