DocumentCode
160624
Title
MARD: A Framework for Metamorphic Malware Analysis and Real-Time Detection
Author
Alam, Shahinur ; Horspool, R. Nigel ; Traore, Issa
Author_Institution
Dept. of CS, Univ. of Victoria, Victoria, BC, Canada
fYear
2014
fDate
13-16 May 2014
Firstpage
480
Lastpage
489
Abstract
Because of the financial and other gains attached with the growing malware industry, there is a need to automate the process of malware analysis and provide real-time malware detection. To hide a malware, obfuscation techniques are used. One such technique is metamorphism encoding that mutates the dynamic binary code and changes the opcode with every run to avoid detection. This makes malware difficult to detect in real-time and generally requires a behavioral signature for detection. In this paper we present a new framework called MARD for Metamorphic Malware Analysis and Real-Time Detection, to protect the end points that are often the last defense, against metamorphic malware. MARD provides: (1) automation (2) platform independence (3) optimizations for real-time performance and (4) modularity. We also present a comparison of MARD with other such recent efforts. Experimental evaluation of MARD achieves a detection rate of 99.6% and a false positive rate of 4%.
Keywords
binary codes; digital signatures; encoding; invasive software; real-time systems; MARD; behavioral signature; dynamic binary code; malware analysis process automation; malware industry; metamorphic malware analysis and real-time detection; metamorphism encoding; obfuscation techniques; opcode; Malware; Optimization; Pattern matching; Postal services; Real-time systems; Runtime; Software; Automation; Control Flow Analysis; End Point Security; Malware Analysis and Detection; Metamorphism;
fLanguage
English
Publisher
ieee
Conference_Titel
Advanced Information Networking and Applications (AINA), 2014 IEEE 28th International Conference on
Conference_Location
Victoria, BC
ISSN
1550-445X
Print_ISBN
978-1-4799-3629-8
Type
conf
DOI
10.1109/AINA.2014.59
Filename
6838703
Link To Document