• DocumentCode
    1607978
  • Title

    Entropy of brain rhythms: normal versus injury EEG

  • Author

    Thakor, N.V. ; Paul, J. ; Tong, S. ; Zhu, Y. ; Bezerianos, A.

  • Author_Institution
    Dept. of Biomed. Eng., Johns Hopkins Univ. Sch. of Med., Baltimore, MD, USA
  • fYear
    2001
  • fDate
    6/23/1905 12:00:00 AM
  • Firstpage
    261
  • Lastpage
    264
  • Abstract
    In communication theory, information measures answer two fundamental questions, viz: the ultimate data compression (by entropy) and the ultimate transmission rate (by the channel capacity). In case of brain and the study of brain function analyzing EEG, the information measures help to show how entropy can be used to remove redundancy in EEG and consequently making it useful for monitoring of brain function in critical conditions and secondly on how information transmission measures describe normal e.g. sleep stages and divergence from normal e.g epilepsy or ischemic brain injury
  • Keywords
    diseases; electroencephalography; entropy; medical signal processing; patient monitoring; sleep; EEG redundancy removal; brain function monitoring; brain rhythms entropy; channel capacity; communication theory; electrodiagnostics; epilepsy; information measures; injury EEG; ischemic brain injury; normal EEG; sleep stages; ultimate data compression; ultimate transmission rate; Channel capacity; Condition monitoring; Data compression; Electroencephalography; Entropy; Epilepsy; Information analysis; Injuries; Rhythm; Sleep;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Statistical Signal Processing, 2001. Proceedings of the 11th IEEE Signal Processing Workshop on
  • Print_ISBN
    0-7803-7011-2
  • Type

    conf

  • DOI
    10.1109/SSP.2001.955272
  • Filename
    955272