DocumentCode
1607978
Title
Entropy of brain rhythms: normal versus injury EEG
Author
Thakor, N.V. ; Paul, J. ; Tong, S. ; Zhu, Y. ; Bezerianos, A.
Author_Institution
Dept. of Biomed. Eng., Johns Hopkins Univ. Sch. of Med., Baltimore, MD, USA
fYear
2001
fDate
6/23/1905 12:00:00 AM
Firstpage
261
Lastpage
264
Abstract
In communication theory, information measures answer two fundamental questions, viz: the ultimate data compression (by entropy) and the ultimate transmission rate (by the channel capacity). In case of brain and the study of brain function analyzing EEG, the information measures help to show how entropy can be used to remove redundancy in EEG and consequently making it useful for monitoring of brain function in critical conditions and secondly on how information transmission measures describe normal e.g. sleep stages and divergence from normal e.g epilepsy or ischemic brain injury
Keywords
diseases; electroencephalography; entropy; medical signal processing; patient monitoring; sleep; EEG redundancy removal; brain function monitoring; brain rhythms entropy; channel capacity; communication theory; electrodiagnostics; epilepsy; information measures; injury EEG; ischemic brain injury; normal EEG; sleep stages; ultimate data compression; ultimate transmission rate; Channel capacity; Condition monitoring; Data compression; Electroencephalography; Entropy; Epilepsy; Information analysis; Injuries; Rhythm; Sleep;
fLanguage
English
Publisher
ieee
Conference_Titel
Statistical Signal Processing, 2001. Proceedings of the 11th IEEE Signal Processing Workshop on
Print_ISBN
0-7803-7011-2
Type
conf
DOI
10.1109/SSP.2001.955272
Filename
955272
Link To Document