DocumentCode :
1609460
Title :
Determination of operational parameters of electrical machines using evolutionary programming
Author :
Ma, J.T. ; Lai, L.L.
Author_Institution :
City Univ., London, UK
fYear :
1995
Firstpage :
116
Lastpage :
120
Abstract :
This paper presents an artificial intelligence approach of using evolutionary programming to estimate the transient and subtransient parameters of a generator under normal operation. The estimation using evolutionary programming is compared with that using corrected extended Kalman filter. The comparison shows that evolutionary programming is robust to search the real values of parameters even when the data are highly contaminated by noises, while with extended Kalman filter, the estimation tends to diverge with such data
Keywords :
Kalman filters; artificial intelligence; electric generators; filtering theory; genetic algorithms; machine theory; parameter estimation; simulated annealing; corrected extended Kalman filter; electrical machines; evolutionary programming; generators; noise contaminated data; operational parameters determination; subtransient parameters; transient parameters;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Electrical Machines and Drives, 1995. Seventh International Conference on (Conf. Publ. No. 412)
Conference_Location :
Durham
Print_ISBN :
0-85296-648-2
Type :
conf
DOI :
10.1049/cp:19950846
Filename :
497707
Link To Document :
بازگشت