DocumentCode :
1609605
Title :
A probabilistic framework for subband autoregressive models applied to room acoustics
Author :
Hopgood, James R. ; Rayner, Peter J W
Author_Institution :
Dept. of Eng., Cambridge Univ., UK
fYear :
2001
fDate :
6/23/1905 12:00:00 AM
Firstpage :
492
Lastpage :
495
Abstract :
Real room acoustic impulse responses (AIRs) modelled by infinite impulse response (IIR) filters require high model orders. Many problems involving the estimation of AIRs reduce to high dimensional optimisation problems. Subband autoregressive (AR) modelling techniques reduce this difficult optimisation problem to a number of simpler low dimensional optimisations. This paper introduces a formulation for subband AR modelling in a probabilistic framework which facilitates robust Bayesian parameter estimation. The paper also provides new results to show that the subband AR representation accurately models typical AIRs and, therefore, is suitable for modelling room reverberation
Keywords :
Bayes methods; IIR filters; acoustic signal processing; architectural acoustics; autoregressive processes; optimisation; parameter estimation; transfer functions; transient response; Bayesian parameter estimation; IIR filters; acoustic impulse responses; infinite impulse response filters; optimisation problems; probabilistic framework; room acoustics; room reverberation; room transfer functions; subband autoregressive modelling techniques; subband autoregressive models; Acoustic signal processing; Acoustical engineering; Bayesian methods; Frequency domain analysis; Frequency estimation; IIR filters; Laboratories; Parameter estimation; Reverberation; Transfer functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2001. Proceedings of the 11th IEEE Signal Processing Workshop on
Print_ISBN :
0-7803-7011-2
Type :
conf
DOI :
10.1109/SSP.2001.955330
Filename :
955330
Link To Document :
بازگشت