• DocumentCode
    161176
  • Title

    Sliding mode fuzzy neural network estimator using 8-bit microcontroller for motor fan air volume control

  • Author

    Chao-Ting Chu ; Huann-Keng Chiang ; Ruei-Song Wu

  • Author_Institution
    Grad. Sch. of Eng. Sci. & Technol., Nat. Yunlin Univ. of Sci. & Technol., Yunlin, Taiwan
  • fYear
    2014
  • fDate
    7-10 May 2014
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    This paper proposed sliding mode controller with fuzzy neural network estimator using 8-bit microcontroller in motor fan system (MFS). MFS wind flow has nonlinear dynamic behavior. We use fuzzy and neural network theory to estimate the lumped uncertainty in MFS. The estimator of adaptive laws is obtained by using the Lyapunov function. The low cost 8-bit microcontroller and Microsoft visual basic human interface are demonstrated through the experiments by designing controller. Experimental results are presented to validate the proposed control methods.
  • Keywords
    Lyapunov methods; adaptive control; fans; fuzzy control; fuzzy neural nets; microcontrollers; neurocontrollers; variable structure systems; volume control; Lyapunov function; MFS wind flow; Microsoft Visual Basic human interface; adaptive laws; microcontroller; motor fan air volume control; motor fan system; neural network theory; nonlinear dynamic behavior; sliding mode controller; sliding mode fuzzy neural network estimator; Brushless motors; Equations; Interference; Lyapunov methods; Microcontrollers; Neural networks; Uncertainty; adaptive laws; estimator; microcontroller;motor fan system; sliding mode controller;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Next-Generation Electronics (ISNE), 2014 International Symposium on
  • Conference_Location
    Kwei-Shan
  • Type

    conf

  • DOI
    10.1109/ISNE.2014.6839369
  • Filename
    6839369