DocumentCode
161176
Title
Sliding mode fuzzy neural network estimator using 8-bit microcontroller for motor fan air volume control
Author
Chao-Ting Chu ; Huann-Keng Chiang ; Ruei-Song Wu
Author_Institution
Grad. Sch. of Eng. Sci. & Technol., Nat. Yunlin Univ. of Sci. & Technol., Yunlin, Taiwan
fYear
2014
fDate
7-10 May 2014
Firstpage
1
Lastpage
4
Abstract
This paper proposed sliding mode controller with fuzzy neural network estimator using 8-bit microcontroller in motor fan system (MFS). MFS wind flow has nonlinear dynamic behavior. We use fuzzy and neural network theory to estimate the lumped uncertainty in MFS. The estimator of adaptive laws is obtained by using the Lyapunov function. The low cost 8-bit microcontroller and Microsoft visual basic human interface are demonstrated through the experiments by designing controller. Experimental results are presented to validate the proposed control methods.
Keywords
Lyapunov methods; adaptive control; fans; fuzzy control; fuzzy neural nets; microcontrollers; neurocontrollers; variable structure systems; volume control; Lyapunov function; MFS wind flow; Microsoft Visual Basic human interface; adaptive laws; microcontroller; motor fan air volume control; motor fan system; neural network theory; nonlinear dynamic behavior; sliding mode controller; sliding mode fuzzy neural network estimator; Brushless motors; Equations; Interference; Lyapunov methods; Microcontrollers; Neural networks; Uncertainty; adaptive laws; estimator; microcontroller;motor fan system; sliding mode controller;
fLanguage
English
Publisher
ieee
Conference_Titel
Next-Generation Electronics (ISNE), 2014 International Symposium on
Conference_Location
Kwei-Shan
Type
conf
DOI
10.1109/ISNE.2014.6839369
Filename
6839369
Link To Document