• DocumentCode
    161399
  • Title

    Distribution of wind power plants to reduce variability of renewable generation

  • Author

    Debnath, Depanwita ; Musilek, Petr ; Heckenbergerova, Jana

  • Author_Institution
    Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB, Canada
  • fYear
    2014
  • fDate
    12-14 May 2014
  • Firstpage
    291
  • Lastpage
    296
  • Abstract
    As the penetration of wind power into generation mix increases, the issue of its integration into the power grid becomes more and more important. The variability of wind power generation is a major concern as wind is highly intermittent. This may result in significant overproduction at times, followed by complete unavailability of wind power at other periods. This intermittency must be compensated for by other, conventional generation sources such as coal and gas fired power plants. This reduces the overall efficiency of the system due to the need of running some generators as spinning reserves, and lowers the overall contribution of renewable generation to the mitigation of greenhouse gas emissions. This paper examines the possibility to optimize the spatial distribution of wind power plants over an extended area to decrease the overall variability of wind power generation in a system. In particular, it considers the integration of spatially distributed wind power generation in the wind-rich province of Alberta, Canada. The distribution of power plants is optimized using simulated annealing and quadratic programming. The results clearly show that the variability of wind power generation can be reduced if the wind resources are integrated over a wide geographic area.
  • Keywords
    air pollution control; distributed power generation; power grids; quadratic programming; simulated annealing; wind power plants; Alberta; Canada; greenhouse gas emission mitigation; power grid; quadratic programming; renewable power generation; simulated annealing; spatially distributed wind power generation; wind power plants; wind resources; Optimization; Wind power generation; Wind speed; Wind turbines;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electric Power Engineering (EPE), Proccedings of the 2014 15th International Scientific Conference on
  • Conference_Location
    Brno
  • Type

    conf

  • DOI
    10.1109/EPE.2014.6839515
  • Filename
    6839515