Title :
Selenium segregation optimization for 10 nm node contact resistivity
Author :
Ni, C.-N. ; Rao, K.V. ; Khaja, F. ; Sharma, Shantanu ; Zheng, Bao ; Ramalingam, J. ; Gelatos, J. ; Lei, Jianjun ; Chang, Chorng-Ping ; Mayur, A. ; Variam, N. ; Hung, R. ; Brand, A.
Author_Institution :
Appl. Mater., Santa Clara, CA, USA
Abstract :
Contact resistivity (ρC) reduction for n-SD (source/drain) with Se+ implant was evaluated for different integration schemes. It is found that Se+ implant energy is one of the most critical process parameters for ρC improvement, achieved by placing the Se+ peak close to silicide (TiSi2 or NiPtSi)/Si interface and minimized implant damage. Recovery of implant damage to silicide and n-SD region was achieved with millisecond laser anneal, while minimizing dopant deactivation. This work demonstrated a viable integration pathway to realize low ρC solution for n-SD for 10 nm node.
Keywords :
contact resistance; elemental semiconductors; ion implantation; laser beam annealing; nickel compounds; platinum compounds; selenium; silicon; titanium compounds; NiPtSi-Si; Se; TiSi2-Si; dopant deactivation minimization; integration schemes; millisecond laser annealling; minimized implant damage; n-SD region; node contact resistivity reduction; selenium segregation optimization; size 10 nm; source-drain region; viable integration pathway; Annealing; Implants; Lasers; Metals; Resistance; Silicides; Silicon;
Conference_Titel :
VLSI Technology, Systems and Application (VLSI-TSA), Proceedings of Technical Program - 2014 International Symposium on
Conference_Location :
Hsinchu
DOI :
10.1109/VLSI-TSA.2014.6839658